
Predict Pairwise Compositional Turnover (ζ-dissimilarity) with Richness
Source:R/predict_dissim.R
predict_dissim.Rd
Takes raw species and environmental data, fits a multi‐site GDM model output, computes predicted pairwise turnover (ζ₂) across the landscape, and returns a data frame with site‐level richness, environmental covariates, distance, and predicted turnover; optionally plots a heatmap of ζ₂ predictions.
Usage
predict_dissim(
grid_spp,
species_cols,
env_vars,
zeta_model,
grid_xy,
bndy_fc = NULL,
x_col = "x",
y_col = "y",
show_plot = TRUE,
skip_scale = FALSE
)
Arguments
- grid_spp
Data frame containing site IDs, coordinates, and species presence–absence/abundance columns.
- species_cols
Integer or character vector giving the columns of
grid_spp
that hold species data.- env_vars
Data frame of raw environmental predictors (unscaled; rows must align with
grid_spp
).- zeta_model
Fitted object from
Zeta.msgdm
(order = 2, reg.type = "ispline").- grid_xy
Data frame of site coordinates, same row‐order as
grid_spp
, with columnsx_col
,y_col
.- bndy_fc
Optional
sf
orSpatVector
polygon to overlay.- x_col
Name of the x (longitude) column in
grid_spp
/grid_xy
.- y_col
Name of the y (latitude) column.
- show_plot
Logical; if TRUE (default), print the turnover heatmap.
Value
A data frame with one row per site, containing:
- richness
Species richness (sum across
species_cols
).- distance
Mean great‐circle distance (km) from each site to all others.
- <env_vars>
All scaled environmental predictors.
- pred_zeta
Linear predictor (logit scale) from
Predict.msgdm()
.- pred_zetaExp
Predicted turnover (0–1 scale).
- log_pred_zetaExp
Natural log of
pred_zetaExp
.- x_col, y_col
Site coordinates (from
grid_xy
).