
Run multiple Zeta.msgdm ispline models and return both models and combined ispline table
Source:R/run_ispline_models.R
run_ispline_models.Rd
Fits Zeta.msgdm
models of type “ispline” for a series of zeta‐orders,
extracts the raw environmental covariates (plus distance) and their ispline bases,
and returns both the list of fitted models and one tidy data frame combining all orders.
Usage
run_ispline_models(
spp_df,
env_df,
xy_df,
orders = 2:6,
sam = 100,
distance.type = "Euclidean",
normalize = "Jaccard",
reg_type = "ispline"
)
Arguments
- spp_df
A data frame or matrix of species incidence/abundance.
- env_df
A data frame of environmental covariates.
- xy_df
A two‐column data frame or matrix of site coordinates.
- orders
Integer vector of zeta orders to fit (e.g. 2:6).
- sam
Integer; number of random samples per order (passed to
Zeta.msgdm
).- distance.type
Character; distance metric for
Zeta.msgdm
(default “Euclidean”).- normalize
Character; normalization method for
Zeta.msgdm
(default “Jaccard”).- reg_type
Character; regression type for
Zeta.msgdm
(default “ispline”).
Value
A named list with:
zeta_gdm_list
A list of the fitted
Zeta.msgdm()
objects, named by order.ispline_table
A tibble with one row per sample, containing all original covariates (including
distance
), the ispline bases suffixed_is
, and azOrder
column.
Examples
if (FALSE) { # \dontrun{
data(bird.spec.fine); data(bird.env.fine)
xy <- bird.spec.fine[,1:2]
spp <- bird.spec.fine[,3:102]
env <- bird.env.fine[,3:9]
out <- run_ispline_models(
spp_df = spp,
env_df = env,
xy_df = xy,
orders = 2:6,
sam = 100,
normalize = "Jaccard",
reg_type = "ispline"
)
names(out)
head(out$ispline_table)
} # }